MOD-TRONIC

www.mod-tronic.com | sales@mod-tronic.com | 1-800-794-5883

INSTRUCTIONS FOR THE 2600 SERIES MICROPROCESSOR BASED TEMPERATURE /PROCESS CONTROL

-

CONTENTS

GETTING STARTED 3
MODEL IDENTIFICATION 4
INSTALLATION 5
WIRING 5
Input Wiring 6
Output Wiring 7
Wiring for 4 to 20mA Transmitter inputs 7
Wiring for Optional Inputs and Outputs 8
Wiring for Option 924 Remote Set Point 8
Wiring for Option 926 Remote Set Point 8
Wiring for Option 928 Remote Set Point 9
Wiring for Option 934 Analog Retransmission 9
Wiring for Option 936 Analog Retransmission 9
Wiring for Option 948 4-Stage Set Point 10
Wiring for Option 992, 993, 995, 996 Serial Communications 11
FRONT PANEL KEY FUNCTIONS 12
PASSWORD TABLE 13
SECURITY LEVEL SELECTION 13
NOTATION CONVENTIONS FOR THE MENUS 14
DISPLAY CONVENTIONS 14
THE HOME DISPLAY 15
Programming and Operation for Ramp / Soak Feature 15
AUTO / MANUAL OPERATION 18
Self Tune Function 18
Operation AND PROGRAMMING OF OPTIONS 19
Options 924, 926, 928, Analog Remote Set Point 19
Option 934, 936, Isolated Analog Retransmission. 20
Option 948, 4-Stage Set Point. 21
Option 992, 993, 995, 996 Serial Communication. 21
Serial Communications Options and Nonvolatile Memory 22
MENU SELECTIONS 23
PRIMARY MENU 23
SECONDARY MENU 24
SECURE MENU 31
ERROR MESSAGES 41-43
CONFIGURATION MENU 44
SPECIFICATIONS 46
INPUT RANGES 49
DIMENSIONS 50

[^0]
GETTING STARTED

1. Install the control as described on page 5.
2. Wire your control following the instructions on pages 5-11. If you are using a twowire transmitter as an input, see the drawing and instructions on page 7. Option wiring instructions are on pages $8-11$. Option descriptions and specific instructions start on page 19.
3. Most controls do not need many (if any) program changes to work on your process. For best results when changing the programming, make all the necessary changes in the Secure Menu (page 31) before making changes to the Secondary Menu (page 24). If error messages occur, check the Error Messages on page 41-43 for help.

Take the example of a Model 26010 that comes from the factory programmed for type J thermocouples. Suppose for this example you wish to change the input to a 100 ohm Platinum RTD and limit the set point range between 0° and $300^{\circ} \mathrm{C}$.

First, enter the Secure menu by pressing and holding the $\Delta \backsim$ UP ARROW \& ENTER keys for 5 Seconds. Press the INDEX key until the display shows inP and press the ∇ DOWN ARROW until the display shows P $\exists 85$. Don't forget to press the $ص$ ENTER key to retain your setting.

Next, press the INDEX key to display Unit. Press the ∇ DOWN ARROW until the display shows [. Press $ص$ ENTER.

Next, press the INDEX key until 5PL is displayed (pass the $d P+$, in $\mathrm{P}+$, and $5 \mathrm{En}[$ selections). Press the \triangle UP ARROW until the display shows 0 . Press $ص$ ENTER.

Finally, press $C D$ INDEX key to display 5PH. Press the ∇ DOWN ARROW until the display shows 300 . Press $ص$ ENTER.

The necessary program changes are now complete. After 30 seconds the display will switch back to the temperature reading. If you want to return faster, press the $\triangle \square$ UP ARROW \& ENTER keys (at the same time) and then press the $\nabla \square$ DOWN ARROW \& INDEX keys (again at the same time). This will 'back out' of the menu and immediately display the temperature reading.

If you want to use Self Tune ${ }^{\circledR}$, Auto/Manual, or the Ramp/Soak Programmer features, see the special sections on these items. Page numbers for these are in the Contents section on the previous page.

MODEL IDENTIFICATION

* Note: Switched15 VDC output standard on Output 1 or Output 3.

Option Description
924 Analog Remote Set Point, 0 to 10 VDC, scalable.
926 Analog Remote Set Point, 0 to 20 mADC, scalable (may be programmed for 1 to $5 \mathrm{~mA}, 4$ to 20 mA , etc.).
928 Analog Remote Set Point, 0 to 10,000 ohms, scalable.
934 Analog Retransmission of Process Variable or Set Variable, 0 to 20 mAdc , scalable (may be programmed for 1 to $5 \mathrm{~mA}, 4$ to 20 mA , etc.).
936 Analog Retransmission of Process Variable or Set Variable, 0 to 10 VDC, scalable.
948 4-Stage Set Point. One of four pre-set set point values can be implemented via contact closure.
992 RS-485 Serial Communications, Lovelink ${ }^{\text {TM }}$ protocol.
993 RS-232 Serial Communications, Lovelink ${ }^{\text {TM }}$ protocol.
995 RS-232 Serial Communications, Modbus ${ }^{\circledR}$ protocol.
996 RS-485 Serial Communications, Modbus ${ }^{\circledR}$ protocol.
Lovelink ${ }^{\text {TM }}$, Lovelink ${ }^{\text {TM }}$ II, and Mother Node ${ }^{\text {TM }}$ are Trademarks of Love Controls.
MODBUS ${ }^{\circledR}$ is a trademark of Schneider Automation.

INSTALLATION

Mount the instrument in a location that will not be subject to excessive temperature, shock, or vibration. All models are designed for mounting in an enclosed panel.

Select the position desired for the instrument on the panel. If more than one instrument is required, maintain the minimum of spacing requirements as shown on the drawing below. Closer spacing will structurally weaken the panel, and invalidate the IP66, UL type 4X rating of the panel.

Prepare the panel by cutting and deburring the required opening.

PANEL CUTOUT

From the front of the panel, slide the housing through the cut out. The housing gasket should be against the housing flange before installing.

From the rear of the panel slide the mounting collar over the housing. Hold the housing with one hand and using the other hand, push the collar evenly against the panel until the spring loops are slightly compressed. The ratchets will hold the mounting collar and housing in place.

CAUTION: It is not necessary to remove the instrument chassis from the
 housing for installation. If the instrument chassis is removed from the housing, you must follow industry standard practice for control and protection against Electro-Static Discharge (ESD). Failure to exercise good ESD practices may cause damage to the instrument.

WIRING

Do not run RTD, thermocouple, or other class 2 wiring in the same conduit as power leads. Use only the type of thermocouple or RTD probe for which the control has been programmed. Maintain separation between wiring of sensor, optional inputs and outputs and other wiring. See the "Secure Menu" for input selection.

For thermocouple input always use extension leads of the same type designated for your thermocouple.

For supply connections use No. 16 AWG or larger wires rated for at least $75^{\circ} \mathrm{C}$. Use copper conductors only. All line voltage output circuits must have a common disconnect and be connected to the same pole of the disconnect.

Input wiring for thermocouple, current, and RTD; and output wiring for current and 15 VDC is rated CLASS 2.

Control wiring is as shown (view is from rear of instrument showing wiring terminals).

Note: Illustrations shown inside the wiring terminals represent internal circuitry. See next page for output wiring chart.

INPUT WIRING

Wire inputs as shown in the chart below.

Terminals	1	3	4	5
Thermocouple	+	-		
RTD -3 wire	A	B	B	
RTD -2 wire	A	B \& J	J	(Jumper 3 to 4)
Voltage	+	-		
Current		-		+

Key: ‘+' = positive; '-' = negative; 'A' = ‘odd' colored lead; 'B' = 'common' leads; 'J' = Jumper.

OUTPUT WIRING

Wire outputs as shown in the chart below.

Terminals	$\mathbf{1 0}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{2 7}$	$\mathbf{2 8}$
SP1 SSR			C	NO					
SP1 15 VDC	+							-	
SP1 Relay		NC	C	NO					
SP1 Current			+	-					
SP2 SSR						C	NO		
SP2 15 VDC	+								-
SP2 Relay					NC	C	NO		
SP2 Current						+	-		

Key: '+' = positive; '-' = negative; 'NC' = Normally Closed; 'NO' = Normally Open; 'C’ = Common.

WIRING FOR 4 TO 20MA TRANSMITTER INPUTS

Wire power and outputs as shown above. Two-wire transmitters wire as shown below. View is of instrument as seen from the rear to show wiring terminals.
For three- or four-wire transmitters follow the wiring instructions provided with your transmitter.

CAUTION: DO NOT WIRE THE 24 VOLT POWER SUPPLY ACROSS THE INPUT OF THE CONTROL. DAMAGE TO THE CONTROL INPUT CIRCUITRY WILL RESULT.

WIRING FOR OPTIONAL INPUTS AND OUTPUTS

All wiring shown below is Class 2. Shielded twisted pair is required for Options 992 and 996. Shielded cable is required for Options 993 and 995. Options 924, 926, and 928 share a common ground with input.

CAUTION: DO NOT RUN SIGNAL WIRING IN THE SAME CONDUIT OR CHASE AS THE POWER WIRING. ERRATIC OPERATION OR DAMAGE TO THE CONTROL CIRCUITRY WILL RESULT.

WIRING FOR OPTION 924 REMOTE SET POINT

WIRING FOR OPTION 926 REMOTE SET POINT

CAUTION: DO NOT RUN SIGNAL WIRING IN THE SAME CONDUIT OR CHASE AS THE POWER WIRING. ERRATIC OPERATION OR DAMAGE TO THE CONTROL CIRCUITRY WILL RESULT.

WIRING FOR OPTION 928 REMOTE SET POINT

WIRING FOR OPTION 934 ANALOG RETRANSMISSION

WIRING FOR OPTION 936 ANALOG RETRANSMISSION

CAUTION: DO NOT RUN SIGNAL WIRING IN THE SAME CONDUIT OR
CHASE AS THE POWER WIRING. ERRATIC OPERATION OR DAMAGE TO THE CONTROL CIRCUITRY WILL RESULT.

WIRING FOR OPTION 948 4-STAGE SET POINT

SWITCH CONTACTS FOR OPTION 948 MUST BE ISOLATED AND CAN NOT SHARE WIRING WITH OTHER CONTROLS.

TRANSISTOR DRIVE MUST BE ISOLATED AND MAY NOT SHARE A COMMON GROUND WITH OTHER EQUIPMENT OR OTHER CONTROLS.

Option 948

CAUTION: DO NOT RUN SIGNAL WIRING IN THE SAME CONDUIT OR CHASE AS THE POWER WIRING. ERRATIC OPERATION OR DAMAGE TO THE CONTROL CIRCUITRY WILL RESULT.

WIRING FOR OPTION 992, 993, 995, 996 SERIAL COMMUNICATIONS

Terminal	29	30	31	32
Options 992, 996	Y (receive -)	Z (receive +)	A (transmit -)*	B (transmit +)*
Options 993, 995	not used	data out	data ground	data in

*For half-duplex operation wire only A and B . Do not connect to Y and Z .

RS-232 DB-9 WIRING
(VIEWED FROM WIRE SIDE)

The decimal point flashes when Self Tune is operating.

\square INDEX: Menu Navigation. Pressing the Ω INDEX key advances the display to the next menu item. May also be used in conjunction with other keys as noted below. UP ARROW: Increments a value, changes a menu item, or selects the item to ON. The maximum value obtainable is 9999 regardless of decimal point placement.
∇ DOWN ARROW: Decrements a value, changes a menu item, or selects the item to OFF. The minimum value obtainable is -1999 regardless of decimal point placement.
\leadsto ENTER: Pressing $ص$ ENTER stores the value or the item changed. If not pressed, the previously stored value or item will be retained. The display will flash once when $ص$ ENTER is pressed.
5 AUTO/MANUAL: This key toggles the control output between Automatic mode and Manual mode. Press and hold key for three seconds to activate. See section on AUTO/MANUAL operation on page 18.

- RUN/HOLD: This key toggles the Ramp/Soak program functions between Run mode (program runs as set up), and Hold mode (program functions are suspended). Press and hold key for three seconds to activate. See section on Ramp/Soak (page 15) for further details.
$\Delta \backsim$ UP ARROW \& ENTER: Menu Access. Pressing these keys simultaneously brings up the secondary menu starting at the alarm, tune, or cycle item (depending on programming). Pressing these keys for 5 seconds will bring up the secure menu.
$\square \nabla$ INDEX \& DOWN ARROW: Menu navigation. Pressing these keys simultaneously will allow backing up one menu item, or if at the first menu item they will cause the display to return to the primary menu.
$\square \nabla$ INDEX \& DOWN ARROW: Alarm Reset. If an alarm condition has occurred, press and hold these keys for three seconds to reset the alarm. Note that the alarm condition will not reset if the alarm condition still exists.
\square (INDEX \& ENTER: 'Global Reset'. Pressing these keys simultaneously and holding them for 5 seconds forces a 'warm boot', restarting the control (similar to turning power off and on). 'Global Reset' will allow recovery from errors and reset the following menu items:

AL iH: Alarm inhibit bRd inP: Input error message

OPEn InP: Input error message
[HEC [AL: Check calibration error

Correct the problems associated with the above conditions before using these reset keys. More than one error could be present. Caution is advised since several items are reset at one time.

While in the Primary or Secondary Menu, if no key is pressed for a period of 30 seconds, the display will return to the HOME position displaying the temperature value. While in the Secure Menu, if no key is pressed for a period of 60 seconds, the display will return to the HOME position displaying the temperature value. Outputs are disabled (turned off) when the Secure Menu is active.

NOTE: To move to the Primary Menu quickly from any other menu, press the Δ UP ARROW \& ENTER keys followed by pressing the $\nabla \mathbb{D}$ INDEX \& DOWN ARROW keys.

SECURITY LEVEL SELECTION

Four levels of security are provided. The display shows the current security level. To change security levels change the password value using the \triangle UP ARROW and ∇ DOWN ARROW keys and press the \square ENTER key. Refer to the password table (following) for the correct value to enter for the security level desired. The 5E[r menu item security level may be viewed or changed at any time regardless of the present security level.

To set the access level to, for example, 2 , at the 5E[r menu item press the \triangle UP ARROW key until the upper display shows the password for level 2 access, 1101. Press the $ص$ ENTER key. The display will blink and return with the level value, ᄅ, in the upper display.

The password values shown in the table cannot be altered, so retain a copy of these pages for future reference. This is the only reference made to password values in this instruction book.

PASSWORD TABLE

Security Level		Displayed Value When Viewed	Password Value To Enter
Menu	Status	1110	
Primary Secondary Secure	Locked Locked Locked	1	
Primary Secondary Secure	Unlocked Locked Locked	2	1101
Primary Secondary Secure	Unlocked Unlocked Locked	\exists	1011
Primary Secondary Secure	Unlocked Unlocked Unlocked	4	111

NOTATION CONVENTIONS FOR THE MENUS

Because of the number of features available in this control, information is included that may not apply to your specific control. All usable features are included in this book, but may not be used in your process. To increase clarity the following conventions are used:

1. Certain features, menu items, and functions shown in this book may or may not appear on your control, depending on other menu item selections. At various places in the menus there are notes identifying menu items that "control" or "direct" other menu items. If you are looking for a particular menu item and can't find it, check the menu item that is its "control" for proper setting.
2. The "\#" symbol is used in two ways. It is used inside a group of characters to indicate which set point function (5P1 or 5 P 2) is being affected. It is also used before a group of characters of a menu item to indicate that there may be more than one selection or value for that menu item. This is used for certain repeated items such as in the Ramp/Soak Program section.

DISPLAY CONVENTIONS

The instrument front has two four digit displays, eleven indicators, and six keys. The diagram on page 12 shows the location of the displays and descriptors.

During normal operation the top four digit display indicates the temperature that is being read by the sensor. The bottom display indicates the set point. When you are programming the instrument, the bottom display indicates the Menu Item being programmed and the top display the value selected for that Menu Item. Error messages use both the top and bottom displays to indicate a particular error.

Each character can only be displayed with seven light segments. Alphabet characters may look peculiar when seen presented this way. The following is an example of the 'seven segment alphabet' as used in the instrument:

Notice that some characters are in upper case while others are in lower case. Some look the same (e.g. G [G] and $9[9]$) and must be interpreted by context. Others are close (e.g. $B[b]$ and $6[b])$, but different. Usually, the context of the term or value will help you determine the correct character.

THE HOME DISPLAY

The home display is the normal display while the control is operating. If no errors or functions are active, the HOME display will indicate the Process Variable (the temperature, pressure, flow, RH, etc., that is being measured) on the top display and the Set Variable (Set Point 1) on the bottom.

Items that can change the HOME display are the Auto/Manual function, the Run/Hold function, the Proq function, the Pcto function, and any error message. Description of these special displays follows.

If the and the home display is changed. The upper display continues to show the Process Variable (PV), but the lower display changes to show the percentage of output in tenths of a percent to 99.9% (0.0 to 99.9), or 100 if 100%. The display digit to the right of the number shows a flashing letter o to indicate that the value displayed is no longer the SV, but percent output. The SP2 percent output is indicated by the use of an overline on the letter $\overline{\text { on }}$. Access to the SP2 value is made by the INDEX key. See Auto/Manual Operation on Page 17 for further information.

If $P_{r o}$ is turned On_{n}, the HOME display changes the SV display from SPl to the Present Set Variable as calculated by the Ramp/Soak Programmer function. See Programming and Operation for Ramp/Soak Feature below for more information.

If PctO (Secondary Menu) is turned 0 n , the lower display changes to show the active percentage of output as required to maintain 5P1. The display is similar to the Auto/Manual display above, except that the percent indicators ($\square, \bar{\circ}$) do not flash, and the output is displayed in whole percentages of output, not in tenths of a percent. If the control has both $5 P 1$ and SP2, the lower display will alternate between the SPl percent output and the 5P2 percent output.

Error messages are listed on pages 41-43.

PROGRAMMING AND OPERATION FOR RAMP / SOAK FEATURE

The ramp / soak feature offers a great deal of flexibility by allowing changes in the set point to be made over a predetermined period of time. Dwell times can be programmed, and the alarm output relay can be programmed to open or close during any of the segments.

Theory of Operation

The 2600 Series controls offer a very simple approach to programming a ramp. Rather than requiring the operator to calculate an approach rate (usually in degrees per minute), the 2600 does the calculation internally. Thus, the operator only needs to program the target set point and the time desired to reach that point. When the ramp segment is executed by the control, it calculates the ramp required to move the process from the starting value (current PV) to the desired value (programmed SP) in the time allowed.

Soaks (or dwells) are ramp segments where the target set point is the same as the beginning process value. This allows for multistage ramps without wasting intermediate soak steps. Care must be taken, however, that the process does actually reach the soak value before the soak time starts. If not, the next segment will calculate a slope from the starting PV to the target SP. Depending on your process requirements, this difference may be important. Make sure to test any program for desired results before running production material.

Do not operate Self Tune while a ramp function is operating. The ramp function will prevent the Self Tune from operating properly. Make sure that all tuning is set up before operating Ramp / Soak.

Program Setup

All of the programming for the Ramp / Soak function is done in the Secondary Menu. You may wish to work out your program on paper before going into the programmer menu sequence.

In the Secondary Menu INDEX to Pro9 and make sure that Proq is set to OFF.

(T) INDEX to PSE + and turn 0 n. Press $ص$ ENTER.

Skip the $5+8+$ setting (this is discussed later) and press INDEX to $1+\mathrm{i}$.
The following items repeat in the following order: $1+\mathrm{i}, 15 \mathrm{P}$, 1 Al and/or 1 AD (if RLI or RL2 in
 avoid repetition each item will only be described once.

Set $1+i$ to the amount of time you want for the first ramp. This value is in time units (determined by the tbR5 menu item) from 0 to 9999 . Press $ص$ ENTER.

Set 15P to the target value desired for the first ramp. This value is in actual units just like 5P1. If the control is programmed for temperature, then the SP displays are in temperature. If the control is programmed for some other engineering unit, the SP is set in that unit.

Press INDEX to continue. If Alarm 1 is programmed as an event ($\mathrm{RL} \mathrm{l}=\mathrm{EUn+}$), then 181 will appear. If you wish the Alarm 1 contact to function for this segment, set 181 for $0 n$. If not, set for OFF. Press $ص$ ENTER. When IAl is set to On, the Alarm 1 function will be active for the entire period set in $1+i$ above.

Complete setting the segment times ($2+\mathrm{i} \ldots \mathrm{b}+\mathrm{i}$), segment set points (25P... 165 P), and event alarms (2R1 ... 1bR1) to On or OFF.

For unneeded or unused segments set the segment times ($2+i \ldots 1 b+i$) to \square, and set the segment set points (25P ... اb5P) to the same value as the last active set point. A segment alarm may be set to indicate "end of run" at the segment number you select.

The last menu item for the ramp / soak function is PEnd. PEnd determines what the control does when the program has ended. You may choose to have the program repeat (LooP), Hold the last set point (1b5P), revert to the local 5Pl, or turn the outputs off ($0 \circ \mathrm{FF}$).

It is important to remember that if you want the program to repeat, you must allow the process to return to the same condition that existed when the program first started. Remember that the ramp function calculates the slope by drawing a line from the beginning PV to the ramp target set point. If the PV at the end of the program is different than the PV at the initial start, the ramp will calculate differently.

Ramp / Soak Operation

When you wish to start the program, enter the Secondary Menu and set the Proq menu item to On. Return to the HOME position by waiting for the display to time out or by pressing the $\Delta \backsim$ UP ARROW \& ENTER keys and then the $\square \square$ DOWN ARROW \& INDEX keys.

The home display will read as it normally does. The HOLD indicator by the RUN / HOLD key will be lit. To start the program press the $\approx \sim$ RUN / HOLD key for three seconds. The HOLD indicator will go out, and the program will start.

To suspend the program at any time, press the RUN / HOLD key. Press the key again to resume.

Pressing the 5 AUTO / MANUAL key will also suspend the program operation. The difference is that AUTO / MANUAL also puts the control into manual mode. See Auto / Manual Operation on page 18.

The function of the Primary Menu will change depending on the setting of the $5+\mathrm{R} \dagger$ menu item in the Secondary Menu. If $5+\mathrm{At}$ is OFF then the Primary Menu is not changed.

If the $5+8 \dagger$ menu item is set to $0 n$, then the Primary Menu has three additional information items added before 5P1 appears. The first INDEX item displays the time remaining in the current segment in the top display (\#\#\#\#), and the message t_{i}, in the lower display. The next INDEX item displays the total time for the active segment in the upper display (\#\#\#\#) and the message \#\#†i ($1+\ldots \ldots+i$...lb $)$, in the lower display. The third INDEX item displays the segment set value (\#\#\#\#) in the top display, and the message \#\#5P (15P ...165P) in the lower display. The next INDEX press resumes the normal Primary Menu

AUTO / MANUAL OPERATION

The AUTO / MANUAL function allows you to manually adjust the output of the control. This is normally used during process setup or start up. It can also be used for troubleshooting. To switch from AUTO to MANUAL press the 통 AUTO / MANUAL key and hold for three seconds. The MANual indicator will light and the lower display will change from normal to showing the actual output in percent. The value will be the actual percentage of output that was active when the key was pressed. This is usually known as "bumpless transfer".

If you wish to change the output while in manual, press the UP ARROW or DOWN ARROW keys to change the value, and press ENTER to retain it. It is important to remember that the value of the display is read as 0 to 100% of the full control output, NOT the range between S 1 OL and S 1 OH or S 2 OL and S 2 OH . For example, if the set point one output is programmed for 4 to $20 \mathrm{~mA}(\mathrm{~S} 1 \mathrm{OL}=20, \mathrm{~S} 1 \mathrm{OH}=100)$, a reading of 50% in MANUAL represents 10 mA , not 12 mA . This allows the operator to go above and below the output range to allow for improperly function equipment that may be connected to the control output.

To return to AUTOmatic control, press the 둥 AUTO / MANUAL key again. The MANual indicator will go out, and the set point will take over. However, if you want bumpless transfer back to AUTO, slowly change the percentage of output until the process variable matches (or at least is close) to the set point. The further away the PV is from the set point, the greater the "bump" or upset there will be in the output.

SELF TUNE FUNCTION

Self Tune allows automatic selection of the necessary parameters to achieve best control operation from your 2600 Series control. If you are using the control output as a simple on-off function (Outl set for OnOF), none of the following will apply.

Theory of Operation

The Self Tune function calculates the $\mathrm{Pb}, r \mathrm{ES}$, and $r+\mathrm{E}$ parameters under the Pid tunE selection, and the Fbnd and FrtE parameters, as shown in the Secondary Menu. These values are determined by measuring the response of the process connected to the control. When Self Tune is started, the control temporarily acts as an on-off control. While in this mode the control measures the overshoot and undershoot of the process, and the period of the process (the time from peak value to the next peak value). These measurements are collected over a period that lasts three periods of overshoot and undershoot. The data collected over this time is then compared and calculated into final PID and Fuzzy Logic values. The effect of Fuzzy Logic on the process is still controlled by the Fint (fuzzy intensity) setting. If Fint is D , the Fbond and FrtE will be calculated, but will have no effect. The calculations for the PID values are the same as used in the standard Ziegler - Nichols equations that have been recognized as standard for decades.

The only modification to the application of the Ziegler - Nichols equations is controlled by the $d F A C$ menu item. This menu item controls the amount of rate (derivative) that is applied. A d FAC setting of \exists (factory default) or less allows for less damping. A d FAC setting of 4 allows for critical damping as set forth in Ziegler - Nichols. AdFR[setting of 5 or more allows over damping of the process.

Program Setup and Operation

Do not cool the process or add heat while the tuning is occurring. In the secondary menu set tunE to SELF. Skip LErn and check to make sure that dFAC is set to the desired value. Back up to LErn and set to UES. The control will begin the Self Tune function. While the Self Tune function is active, the right hand decimal point on the lower display will blink. When Self Tune is complete, the blinking will stop.

After Self Tune is complete, the tunE setting automatically switches to Pid. This allows examination and / or modification of the values calculated. We recommend that you do not change the calculated values unless you have a firm understanding of the parameters involved and their function.

OPERATION AND PROGRAMMING OF OPTIONS

Options 924, 926, 928, Analog Remote Set Point

The analog remote set point allows the control set point to be determined by an outside analog signal. The signal may be 0 to 10 VDC (Option 924), 0 (or 4) to 20 mADC (Option 926), or 0 to 10,000 Ohms (Option 928).

Wire the input as shown on pages 8 and 9.
To set up the analog remote set point, first determine the scale range that the analog signal will represent. The maximum span is 11,998 degrees or counts. In the Secure Menu set $\stackrel{5 C L}{ }$ for the scale value that will be represented by the low end of the analog signal (0 Volts, $0 \mathrm{~mA}, 0 \mathrm{Ohms}$). Set $\mathrm{r} 5[\mathrm{H}$ for the scale value that will be represented by the high end of the analog signal (10 Volts, $20 \mathrm{~mA}, 10,000$ Ohms).

If you require a suppressed scale or input, use the following equations to determine the proper settings for $r 5[L$ and $r 5[H$.

K = (Highest desired scale reading - Lowest desired scale reading) / (Maximum desired analog signal - Minimum desired analog signal).
r5CH = ((Maximum possible analog signal- Maximum desired analog signal) * K) + Highest desired analog reading.
r5CL = Lowest desired scale reading - ((Minimum desired analog signal) *K).
Make sure that a valid analog signal is available to the control. In the Secondary Menu set the r5Pt to $0 n$. The REM indicator on the front of the control will turn on. When the control returns to the HOME position, the displayed SV will be the value supplied from the analog remote signal. If the analog remote signal fails or goes out of range of the 5PL or 5PH settings, the control will revert to the internal SPl (or \#SPl), and flash the error message [HE[r5Pt. If 5PL or 5PH are set outside of r5CL or r5CH then the error will be suppressed, and the control will attempt to work with the remote value.

To clear the error message, change $r 5 P+$ to OFF.

Option 934, 936, Isolated Analog Retransmission.

The analog retransmission option allows the Process Variable or the Set Variable to be sent as an analog signal to an external device. The signal may be either 0 to 10 VDC (Option 936) or 0 (or 4) to 20 mADC (Option 934). The output may be changed in the field from one to the other by the toggle switch located on the top printed circuit board.

Wire the output as shown on page 9.

To set up the analog retransmission, first determine the scale range that the analog signal will represent. The maximum scale is $9999^{\circ} \mathrm{F}, 5530^{\circ} \mathrm{C}$, or 9999 counts. In the Secondary Menu set POL for the scale value that will be represented by the low end of the analog signal (0 Volts or 0 mA). Set POH for the scale value that will be represented by the high end of the analog signal (10 Volts or 20 mA).

If you require a suppressed scale or output, use the following equations to determine the proper settings for POL and POH .
 analog signal - Minimum desired analog signal).
$\mathrm{POH}=(($ Maximum possible analog output - Maximum desired analog signal) * K) + Highest desired analog reading.
POL = Lowest desired scale reading - ((Minimum desired analog output) * K).
Next select whether you want the retransmission signal to follow the Process Variable or the Set Variable. Usually the Process Variable is sent to recorders or other data acquisition devices. Usually the Set Variable is sent to other controls to be used as an analog remote set point. If you want the analog retransmission signal to follow the PV, in the Secondary Menu set P05r to inP. If you want the analog retransmission signal to follow the SV, set POSr to SPt.

Operation is automatic. There are no further programming steps required.

Option 948, 4-Stage Set Point.

The 4-stage set point option allows four different values to be used for 5P1 and all of the values associated with the tunE menu items. The control will switch to a given stage when an external contact or contacts are made or opened across the appropriate terminals at the rear of the control (5P5A, Set Point Switch Action, set for remote, rE), or when the stage is selected from the Secondary Menu, SP (when SPSA is set for int). When the state of a contact changes (or the stage number is changed in the Secondary Menu), the values in use are stored and the previously stored values for the new stage are used.

Wire the input as shown on page 10.

Usually the control is configured for external switching of the stages. In this case, the operation is usually automatic, selected by the external switches driven by the machine logic. If it is necessary to program the stages in advance, you may select the stage to modify with the SP menu item. When SP is changed while the SP5A is set for rE, the selected stage is displayed for modification, but only used when the appropriate contact is made.

Option 992, 993, 995, 996 Serial Communication.

The serial communications options allow the control to be written to and read from a remote computer or other similar digital device. Communication is allowed either through a RS-485 (Option 992, 996) port, or a RS-232 (Option 993, 995) port.

Wire the communication lines as shown on Page 11. Wiring for the RS-485 is run from control to control in a daisy chain fashion with a termination resistor (120 ohms) across the transmit and receive terminals of the last control in the chain.

Select the control address and communication baud rate with the Fddrand bAUd menu items in the Secure Menu.

NOTE: THE BAUD RATE AND ADDRESS MENU ITEM SETTINGS WILL TAKE EFFECT ON THE NEXT POWER UP OF THE CONTROL. BE SURE TO TURN THE POWER TO THE CONTROL OFF AND ON BEFORE USING THE NEW BAUD RATE AND ADDRESS VALUES.

In operation, you have the option of preventing a write command from the host computer. To prevent the host from writing to the control change the LOrE menu item in the Secondary Menu to LOC. To allow the host to write commands to the control set LDrE to r. (The host does have the ability to change the LDrE state, but it is not automatic.)

If your system depends on constant reading or writing to and from the host, you may wish to set the No Activity Timer ($n \mathrm{~A} \dagger$) to monitor the addressing of the control. When the LOrE is set to $r E$ and the $n A+$ is set to any value other than OFF, the control will expect to be addressed on a regular basis. If the control is not addressed in the time set by the value of nAt , then the control will display the error message [HE[LDrE. To clear the message set LDrE to LDC .

SERIAL COMMUNICATIONS OPTIONS AND NONVOLATILE MEMORY

There are many different types of memory used in computer driven devices. The terms RAM (random access memory) and ROM (read only memory) are a couple with which you may be familiar.

RAM is used in computers to run programs and hold data for a short period of time. This is the memory that is used primarily in PCs. RAM is very fast and can be read and written to over and over again. Its major weakness is that it is erased when the power is turned off.

ROM is used in computers to hold the 'permanent' programming that allows a PC to start. This memory is 'burned in' to the chip itself and can not be changed. Unlike RAM, however, this memory is permanent. While it can not be changed, it can not lose its programming when power is turned off. This is the type of memory that is used to store the permanent programming for the control.

There is a third type of memory that is now currently used to combine the characteristics of both RAM and ROM. This is known as EEPROM (electrically erasable programmable read only memory). While the name may be long and somewhat cryptic, the EEPROM can be erased and re-written many times, and yet hold the programmed data even over long periods when the power is off. This is the type of memory that Love Controls uses to save the settings you program in your control. The reliability and longevity of the data retention is what allows us to guarantee a 10 year data retention without power.

In normal operation, the control uses RAM, just as any other computerized device. Whenever you make a change to one of the parameters in the control, the set point for example, the new value is written into the EEPROM. This way, if power goes off for whatever reason, when power resumes, the latest settings are preserved. When power is turned on, the data is copied from the EEPROM to the RAM to restore operation.

You might ask, "If EEPROM is such a wonderful thing, why bother with RAM?" One reason is that is that RAM is much faster than EEPROM. Faster speed gives you better performance in critical control functions.

Perhaps the most important reason is that RAM allows an unlimited number of writes, while EEPROM has a limit to the number of times that it can be erased and re-written. Current technology now sets that limit at about one million erase / write cycles. In a dynamic control situation, it may be necessary to update RAM every few milliseconds. EEPROM can not keep up to that pace, and, even if it could, it would be 'used up' in a matter of days.

If you think about how long it would take to make a million changes to the control programming through the front key pad, you will see that it would take a very long time to get to use up the life of the EEPROM.

Adding one of the computer communications options (e.g. 992, 993, 995, 996) changes the picture. The speed of computer communications is such that hundreds of instructions can be made in less than a minute. In such a situation, the million erase / write cycles could be used up in a couple of months causing the chip (and the control) to fail.

Usually in such a situation, the control is under close observation by the host computer. It may not be necessary, then, to have the data written to the EEPROM, as it is 'transitory' in nature (changing set points for a ramp/soak sequence for example).

Controls equipped with a Serial communications option have a menu item in the Secure menu (5tor) that allows the serial communications to write to RAM (5tor =no).

The factory default is 'write to EEPROM' (5tor = YE5).
If your computer system will be making frequent changes to the control, we strongly recommend that you select the 'write to RAM' parameter (5tor =no). If you are primarily reading from the control, there is no need to change the setting.

For further information on protocols and technical information regarding computer programming for the Serial Communications options, see our web site at http://www.lovecontrols.com/protocol.

MENU SELECTIONS

PRIMARY MENU
Press INDEX to advance to the next menu item. Press \triangle UP ARROW or \square DOWN ARROW to change the value in the display. Press ENTER to retain the value. If $5+\mathrm{A}+$, (Secondary Menu), is 0 n , the three program status menu items shown on Page 17 will precede the following.
\#SPl (Option 948, 4-Stage Set Point) or
SPl Set Point 1 Adjust, Control Point 1.
5P2 Set Point 2 Adjust (if equipped), Control Point 2.

SECONDARY MENU

Hold $\triangle \backsim$ UP ARROW \& ENTER. Press \square INDEX to advance to the next menu item. Press \triangle UP ARROW or ∇ DOWN ARROW to change the value in the display. Press $ص$ ENTER to retain the value.

If your instrument is not equipped with alarms (third character of part number is ' 0 '), the Secondary Menu starts with Outl, below.

AILo Alarm 1 Low: The Low Alarm point is usually set below the Set Point. May not appear depending on RLI setting in Secure Menu.

AlHi Alarm 1 High: The High Alarm Point is usually set above the Set Point. May not appear depending on RLI setting in Secure Menu.

ReLo Alarm 2 Low: The Low Alarm point is usually set below the Set Point. May not appear depending on AL2 setting in Secure Menu.

A己Hi Alarm 2 High: The High Alarm Point is usually set above the Set Point. May not appear depending on FL 2 setting in Secure Menu.

Out1 Output selection: Select OnOF, \#+P, \#PuL, or ProP. OnOF A setting of OnOF allows the control to operate in simple on/off mode. This setting forces the control to turn off at set point, and on at the set point plus the differential (5Pld). When selected, the Outl OnOF menu item is followed by \#\#\#\# SPld, and the tunE, Pb, rES, OF5, and r†E selections in the Secondary menu and the 510 L and 510 H selections in the Secure menu are suppressed.
5Pld Set Point On-Off Differential (hysteresis). Set for the amount of difference between the turn off point and the turn on point. Select 1 to 9999 (direct acting), or -1 to -9999 (reverse acting). This value will be negative for reverse acting set points, and positive for direct acting outputs. The following drawing shows output behavior for reverse and direct action. For reverse action note how the output decreases as the input process variable increases, e.g. heat power goes to zero as the temperature increases to set point.

\＃\＃+P	Time ItP Proportioning Cycle Time．Select $1+P$ to $80+P$ ．
A setting of $1+P$ is recommended for solid state outputs（SSR or	
$15 \mathrm{VDC})$.	

The following menu items apply only if your control is equipped with a second set point（last digit of model number is not zero）．If your control does not have a second set point，jump to the tunE menu on the next page．

Out己 Output selection：Select DnOF，\＃†P，\＃PuL，or ProP．
OnOF A setting of OnOF allows the control to operate in simple on／off mode．
This setting forces the control to turn off at set point，and on at the set point plus the differential（5P2d）．When selected，the Out己／0n0F menu item is followed by \＃\＃\＃\＃SPこd，and the Pb 2 selection in the Secondary menu and the 520L and 520H selections in the Secure menu are suppressed．
5P2d Set Point On－Off Differential（hysteresis）．Select lto 9999 （direct acting），or－l to－9499（reverse acting）．See 5Pld on the previous page．
\＃\＃+P Time Proportioning Cycle Time．Select $1+P$ to $80+P$ ．
$1+P \quad$ A setting of $1+P$ is recommended for solid state outputs（SSR or 15 VDC）．
$2+P$ to $80+P$ Time Proportioning Control is adjustable in 1 second steps．Recommended for mechanical outputs（relays，solenoids， etc．）．For best contact life，a time should be selected as long as possible without causing the process to wander．
\#PuL Pulsed Time Proportioning Output: Select IPuL to 7PuL. PruL = Linear and 7PuL = most nonlinear. Changes output linearity for use in cooling applications or for extremely fast response processes. At the center of the proportional band, a pulse value of 1 provides an output of one second on and one second off (50% output). A pulse value of 2 provides an output of one second on and two seconds off (33% output). Output at center of band equals one second on, $2^{\text {(pulse value-1) }}$ seconds off.
ProP For Current (Code 5) outputs only.

5 (Option 948, 4-Stage Set Point) Active Set Point Stage. Select 15P1, ᄅ5P1, 35P1, 45P1. (See Page 21 for more detail.)
15P1 Set Menu Items to display Stage 1 for view and change access. If 5P5R is set for int, 15Pl is made active.
25P1 Set Menu Items to display Stage 2 for view and change access. If 5P5A is set for Int, 25P1 is made active.
35P1 Set Menu Items to display Stage 3 for view and change access. If 5P5R is set for Int, 35Pl is made active.
$45 \mathrm{P} 1 \quad$ Set Menu Items to display Stage 4 for view and change access. If 5P5R is set for $\mathrm{in} \dagger, 45 \mathrm{Pl}$ is made active.
\#5P1 (Option 948, 4-Stage Set Point) Adjust Control Point 1 for Stage selected above.

Note: The menu items for tunE (below) are modified when Option 948 is active. Then, the menu items are shortened or shifted right, and preceded with the stage number selected in 5P above. Each stage has its own set of tunE parameters as indicated by \#tun.
\#†un (Option 948, 4-Stage Set Point) or
tunE Tuning Choice: Select SELF, Pid, SLD, nor, or FASt.
5ELF The Controller will evaluate the Process and select the PID values to maintain good control. Active for SP1 only.
LErn Select UES or no
YE5 Start Learning the Process. After the process has been learned the menu item will revert to no.
no Learning will stay in present mode.
dFA[Damping factor, Select DFF, 1 to 7 . Sets the ratio of Rate to Reset for the SELF tunE mode. $7=$ most Rate. Factory set to Э. For a fast response process the value should be lowered (less Rate). For a slower process the value should be increased (more Rate).
Pid Manually adjust the PID values. PID control consists of three basic parameters, Proportional Band (Gain), Reset Time (Integral), and Rate Time (Derivative).
\#Pbl (Option 948, 4-Stage Set Point) or
Pbl Proportional Band (Bandwidth). Select 1 to $9999^{\circ} \mathrm{F}$, ${ }^{\circ} \mathrm{C}$, or counts.
Pb己 Proportional Band (Bandwidth). Select 1 to $9999{ }^{\circ} \mathrm{F}$, ${ }^{\circ} \mathrm{C}$, or counts. Appears only if control is equipped with second set point and Out己 is NOT selected as OnDF .
\#rES (Option 948, 4-Stage Set Point) or
rE5 Automatic Reset Time. Select OFF, 0.1 to 99.9 minutes. Select OFF to switch to OF 5 .
\#OF5 (Option 948, 4-Stage Set Point) or
OF5 Manual Offset Correction Select OFF, 0.1 to 99.9 percent. Select OFF to switch to rE5.
\#r+E (Option 948, 4-Stage Set Point) or
r†E Rate Time. Select OFF, 0.01 to 99.99 minutes, Derivative.
5LD PID values are preset for a slow response process.
nor PID values are preset for a normal response process.
FA5 \dagger PID values are preset for a fast response process.
Pid2 Linkage of PID parameters between SP1 and SP2: Select On or OFF.
On Applies SP1rES, r + E, Fbnd, and FriE terms to SP2 for heat/cool applications.

RrUP Anti- Reset Windup Feature: Select On or OFF.
On When ArUP is On the accumulated Reset Offset value will be cleared to 0% when the process input is not within the Proportional Band.
OFF When RrUP is OFF, the accumulated Reset Offset Value is retained in memory when the process input is not within the Proportional Band.

ArtE Approach Rate Time: Select OFF, 0.01 to 99.99 minutes. The function defines the amount of Rate applied when the input is outside of the Proportional Band. The Rr $+E$ time and the $r+E$ time are independent and have no effect on each other. To increase damping effect and reduce overshoot set the approach rate time for a value greater than the natural rise time of the process (natural rise time = process value time to set point).

Fint Fuzzy Logic Intensity: Select to to 100 . 0\% is OFF (disables Fuzzy Logic). The function defines the amount of impact Fuzzy Logic will have on the output.

Fbond Fuzzy Logic Error Band: Select 0 to $4000{ }^{\circ} \mathrm{F}$, ${ }^{\circ} \mathrm{C}$, or counts. Sets the bandwidth of the Fuzzy Logic. Set Fbnd equal to PID proportional band (Pbl) for best results.

Fr†E Fuzzy Logic Rate of Change: Select 0.00 to 99.99 counts/second. For best initial setting, find the counts/second change of process value near Set Point 1 with output ON 100%. Multiply this value by 3 . Set $\mathrm{Fr}_{\mathrm{r}}+\mathrm{E}$ to this calculated value.

PEA The Peak feature stores the highest input the control has measured since the last reset or Power On. At Power On PER is reset to the present input. To manually reset the value PER must be in the lower display. Press the $ص$ ENTER key to reset. PEA will be reset and display the present input value.

URL The Valley feature stores the lowest input the Instrument has measured since the last reset or Power On. At Power On UAL is reset to the present input. To manually reset the value UAL must be in the lower display. Press the $ص$ ENTER key. URL will be reset and display the present input value.

Pcto Percent Output Feature: Select On or OFF.
On When selected On_{n}, the HOME lower display will indicate the output of the controller in percent. The "\%" indicator lamp will light and an "o" will appear in the right hand side of the lower display to indicate percent output for SP1. An "о" will appear on the right hand corner of the lower display to represent percent output for SP2, if the control is so equipped. The display will alternate between these values.
OFF Percent Output display is disabled.

Pro9 Ramp/Soak: Select On or OFF
On Allows Programmed Ramp/Soak function to be started by the Run/Hold key on the control front panel.
DFF Turns Ramp/Soak function OFF and resets program to beginning.
P5E + Programmer function set: Select On or OFF.
DFF Skip Ramp/Soak Programming. Go to next Secondary Menu Item, InPC (next page).
On Enable Ramp/Soak Programming.
$5 \dagger$ At Programmer Status Display in the Primary Menu when Prog (above) is On: Select On or OFF.
OFF The Primary Menu operates as normal.
On The Primary Menu is altered to have the following items inserted before the SP1 menu item:
\#\#\#\# ti time remaining in active segment \#\#\#\# \#\# \dagger i total time in active segment \#\#\#\# \#\#5P segment target set point
tbR5 Ramp/Soak Time Base: Select l_5 or b0_5.
l_5 Ramp/Soak time base is in 1 second increments. Program time lif...lb +i is measured in seconds.
b0_5 Ramp/Soak time base is in 60 second increments (minutes). Program time lit...lbti is measured in minutes.

The following items repeat in the following order: $1+\mathrm{i}, 15 \mathrm{P}, 1 \mathrm{R1}$ and 1 RE (if RL) is
 each item will only be described once.

Iti Segment Time: Select 0 to 9999 units (minutes if +6 RS is set to $b 0 _5$, seconds if +bAS is set to l_5).

15P Segment Set Point: Set to target value desired.
181 Segment Alarm 1 Event: Select On or OFF.
On Alarm 1 is active during segment 1 time ($1+i$).
OFF Alarm 1 is inactive during segment 1 time ($1+i$ i).
1R2 Segment Alarm 2 Event: Select On or OFF.

PEnd Program End action: Select Hoid or OoFF.
Hold Stay at the Present Set Point (1b5P).
DofF Turn Off SP1 and SP2 Outputs at the end of the program.
Loop Repeat program starting at $1+\mathrm{i}$.
5Pl Revert to 5Pl value.

Input Correction: Select -500 to 0 to $500{ }^{\circ} \mathrm{F}$, ${ }^{\circ} \mathrm{C}$, or counts. This feature allows the input value to be changed to agree with an external reference or to compensate for sensor error. Note: $\mathrm{In}_{\mathrm{n}} \mathrm{I}[$ is reset to zero when the input type is changed, or when decimal position is changed. Factory default is 0 .

FiL + Digital Filter: Select OFF, 1 to 99 . In some cases the time constant of the sensor, or noise, could cause the display to jump enough to be unreadable. A setting of 2 is usually sufficient filtering (2 represents approximately a 1 second time constant). When the 0.1 degree resolution is selected this should be increased to 4. If this value is set too high, controllability will suffer.

LPbr Loop Break Protection: Select OFF, 1 to 9999 seconds. If, during operation, the output is minimum (0%) or maximum (100\%), and the input moves less than $5^{\circ} \mathrm{F}$ $\left(3^{\circ} \mathrm{C}\right)$ or 5 counts over the time set for LPbr, the LOOP bRd message will appear. This condition can also be routed to an Alarm Condition if alarms are present and turned On (see RLbr in the Secure Menu). The loop break error can be reset by pressing the $ص$ ENTER key when at the LPbr menu item. The \longleftarrow INDEX \& ENTER keys may also be used.

POL (Option 934, 936, Analog Retransmission Output) Process Output Low: Select $450^{\circ} \mathrm{F},-260^{\circ} \mathrm{C}$, or -1999 counts to any value less than POH .

POH (Option 934, 936, Analog Retransmission Output) Process Output High: Select from any value greater than POL to $+9999^{\circ} \mathrm{F},+5530^{\circ} \mathrm{C}$, or 9999 counts.

P05r (Option 934, 936, Analog Retransmission Output) Process Output Source: Select inP or 5Pt.
inP Output follows the Process Variable (input).
5P+ Output follows the Set Variable.
r5P† (Option 924, 926, 928, Analog Remote Set Point) Remote Set Point: Select [n or DFF.
OFF The control uses the value set for 5P1.
On The control uses the value set by the analog remote set point signal as established by the Secure Menu items r5CL and r5CH. If the analog signal fails, the control will display the error message [HE[r5Pt and revert to the 5P1 local value.

LDrE (Option 992, 993, 995, 996, Serial Communications) Local / Remote Status: Select LOC or rE. Does not affect other instruments on daisy chain.
LOE The host computer is advised that remote write commands will be rejected. Any write commands sent to this control will be rejected. All read commands are accepted.
rE The host computer is allowed to send write commands. If the control is not addressed within the time set in nA† (No Activity Timer in the Secure Menu) the [HE[lorE error message will be displayed.

Rddr (Option 992, 993, 995, 996, Serial Communications) Control Address: Display address from 1 to $\exists F F$ for Options 992 and 993. Display address from 1 to FF for options 995 and 996.. This number (hexadecimal, base 16) must match the address number used by the host computer. Not settable in this menu. To change this parameter, see Fddr in the Secure Menu.

SECURE MENU

Hold $\triangle \backsim$ UP ARROW \& ENTER for 5 Seconds. Press INDEX to advance to the next menu item. Press \triangle UP ARROW or ∇ DOWN ARROW to change the value in the display. Press $ص$ ENTER to retain the value.

OUTPUTS ARE DISABLED (TURNED OFF) WHILE CONTROL IS IN SECURE MENU.

5E[r Security Code: See the Security Level Selection and the Password Table in this manual, in order to enter the correct password.

Input Type: Select one of the following. Refer to the Wiring section for the proper wiring.
J-IC Type "J" Thermocouple

CA Type "K" Thermocouple
E- Type "E" Thermocouple
+- Type "T" Thermocouple
L- Type "L" Thermocouple
$n^{-} \quad$ Type " N " Thermocouple
r-1ヨ Type "R" Thermocouple
5-10 Type "S" Thermocouple
b- Type "B" Thermocouple
[- Type "C" Thermocouple
Pヨ92 100 ohm Platinum (NIST $0.00392 \Omega / \Omega /{ }^{\circ} \mathrm{C}$)
nle0 120 ohm Nickel
P 385100 ohm Platinum (IEC/DIN $0.00385 \Omega / \Omega /{ }^{\circ} \mathrm{C}$)
1P $38 \quad 1000$ ohm Platinum (IEC/DIN $0.00385 \Omega / \Omega /{ }^{\circ} \mathrm{C}$)
Curr DC Current Input 0.0 to 20.0 or 4.0 to 20.0 mA .
UoL + DC Voltage Input 0.0 to 10.0 or 1.0 to 10.0 volts.
diFF DC Voltage Input -10 to +10 mV .
---- Reserved
05UP Zero Suppression: Select On or OFF. Only with Current and Voltage input types.
OFF The input range will start at 0 (zero) Input.
On The input range will start at 4.00 mA or 1.00 V .
Unit F. [or monE.
$\mathrm{F} \quad{ }^{\circ} \mathrm{F}$ descriptor is On and temperature inputs will be displayed in actual degrees Fahrenheit.
[$\quad{ }^{\circ} \mathrm{C}$ descriptor is On and temperature inputs will be displayed in actual degrees Celsius.
nonE $\quad{ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$ descriptors will be Off. This is only available with Current and Voltage Inputs.
dPt Decimal Point Positioning: Select 0, 0.0, $0.00,0.000$, or 0000 . On temperature type inputs a change here will alter the Process Value, SP1, SP2, ALLo, ALHi, and InPC. For Current and Voltage Inputs all Menu Items related to the Input will be affected.
$0 \quad$ No decimal Point is selected. This is available for all Input Types.
0.0 One decimal place is available for Type J, K, E, T, L, RTD's, Current and Voltage Inputs.
0.00 Two decimal places is only available for Current and Voltage Inputs.
0.000 Three decimal places is only available for Current and Voltage inputs.

InPt

5EnL Sensor Rate of Change: Select OFF, 1 to $4000{ }^{\circ} \mathrm{F}$, ${ }^{\circ} \mathrm{C}$, or counts per 1 second period. This value is usually set to be slightly greater than the fastest process response expected during a 1 second period, but measured for at least 2 seconds. If the process is faster than this setting, the 5EnL bAd error message will appear. The outputs will then be turned off. This function can be used to detect a runaway condition, or speed up detection of an open thermocouple. Use the $ص$ INDEX \& ENTER keys to reset.

5CAL Scale Low: Select 100 to 11998 counts below 5CAH. The total span between 5CAL and SCAH must be within 11998 counts. Maximum setting range is -1999 to +9999 counts. For Current and Voltage inputs, this will set the low range end. Value not adjustable for Thermocouple and RTD ranges.

5[AH Scale High: Select 100 to 11998 counts above 5CAL. The total span between 5CAL and SCAH must be within 11998 counts. Maximum setting range is -1999 to +9999 counts. For Current and Voltage inputs, this will set the high range end. Value not adjustable for Thermocouple and RTD ranges.

5PL Set Point Low: Select from the lowest input range value to 5PH value. This will set the minimum SP1 or SP2 value that can be entered. The value for SP1 or SP2 will stop moving when this value is reached.

Set Point High: Select from the highest input range value to SPL value. This will set the maximum SP1 or SP2 value that can be entered. The value for SP1 or SP2 will stop moving when this value is reached.

Set Point 1 State: Select dir or rE .
dir Direct Action. As the input increases the output will increase. Most commonly used in cooling processes.
rE Reverse Action. As the input increases the output will decrease. Most commonly used in heating processes.

If Outl (Page 19) is set for \#\#+P, \#PUL, or ProP, then 510L and 510H appear. If Outl is set for OnOF , then skip to 5lrE.

510L Set Point Output Low Limit: Select 0 to 100% but not greater than 510H. This item limits the lowest output value. This is useful for adding a bias to the process when needed. Factory set to 0 for output codes 1 and 3 . Factory set to 20 for output code 5 (20% output equals 4 mA output).
$510 H \quad$ Set Point 1 Output High Limit: Select 0 to 100% but not less than 510L for output codes 1 and 3 . Select 0 to 102% but not less than $510 L$ for output code 5. This item allows setting the maximum output limit. This is useful with processes that are over powered. Adjustment to 102% allows setting current output to force a full on condition for output devices which do not have bias adjustments. Factory set to 100 for all output codes.

If Outl is set for \#\# +P , \#PUL, or ProP, then skip to SILP (next page).

If Outl is set to OnOF (in the Secondary Menu), then the next three menu items can make the 5Pl and 5Pld settings act like a high or low alarm set point. See the information on alarm settings and the cautions and warnings that apply to them on Pages 36-37.

Note that when Set Point 1 Power Interrupt, 51Pi is On, and Set Point 1 Reset, SlrE , is programmed to HoLd, the SP1 output will automatically reset upon a power failure and subsequent restoration, if the process is below 5P1.

SlrE Set Point 1 Reset. Select OnOF or HoLd.
OnOF Output will automatically reset when process passes back through 5Pld.
HoLd Manual Reset. Reset (acknowledge) by simultaneously pressing the
$\square \square$ INDEX \& DOWN ARROW keys for 3 seconds.
51Pi Set Point 1 Power Interrupt. Select On or OFF.
On Alarm Power Interrupt is On. Output will automatically reset on power-up if no alarm condition exists.
OFF Alarm Power Interrupt is DFF. Output will be in the alarm condition on power-up regardless of condition of process.

SliH Set Point 1 Inhibit: Select Dn or OFF.
On Alarm Inhibit is On. Alarm action is suspended until the process value first enters a non-alarm condition.
OFF Alarm Inhibit is DFF.
SILP Set Point Lamp: Select Don or DoFF.
Oon Lamp ON when Output is ON.
DoFF Lamp OFF when Output is ON.

If your control is not equipped with Set Point 2, then proceed to the alarm section (next page).

52 $\dagger \quad$ Set Point 2 type: Select RbS or dE.
Ab5 Absolute 5P2. SP2 is independent of 5P1, and may be set anywhere between the limits of 5 PL and 5 PH .
dE Deviation SP2. SP2 is set as a deviation from SPI, and allows SP2 to retain its relationship with $5 P 1$ when $5 P 1$ is changed (5P2 tracks $5 P 1$).

525 + Set Point 2 State: Select dir or re.
dir Direct Action. As the input increases the output will increase. Most commonly used in cooling processes.
rE Reverse Action. As the input increases the output will decrease. Most commonly used in heating processes.

If Out2 is set for \#\#†P, \#PUL, or ProP, then 520L and 520H appear. If Out2 is set for OnOF , then skip 520L and 520H.

520L Set Point Output Low Limit: Select 0 to 100% but not greater than 520H. This item limits the lowest output value. This is useful for adding a bias to the process when needed. Factory set to 0 for output codes 1 and 3 . Factory set to 20 for output code 5 (20% output equals 4 mA output).
$520 H \quad$ Set Point 2 Output High Limit: Select 0 to 100% but not less than 520L for output codes 1 and 3 . Select 0 to 102% but not less than 520L for output code 5. This item allows setting the maximum output limit. This is useful with processes that are over powered. Adjustment to 102% allows setting current output to force a full on condition for output devices which do not have bias adjustments. Factory set to 100 for all output codes.

If Oute is set to OnOF (in the Secondary Menu), then the next three menu items can make the 5P2 and 5P2d settings act like a high or low alarm set point. See the information on alarm settings and the cautions and warnings that apply to them on the next pages.

Note that when Set Point 2 Power Interrupt, $52 P_{i}$ is On_{n}, and Set Point 2 Reset, $52 r \mathrm{E}$, is programmed to Hold, the SP2 output will automatically reset upon a power failure and subsequent restoration, if the process is below SP2.

S己rE Set Point 2 Reset. Select OnOF or Hold.
OnDF Output will automatically reset when process passes back through 5P2d.
Hoid Manual Reset. Reset (acknowledge) by simultaneously pressing the $\square \square$ INDEX \& DOWN ARROW keys for 3 seconds.

S2Pi Set Point 2 Power Interrupt. Select On or OFF.
On Alarm Power Interrupt is On. Output will automatically reset on powerup if no alarm condition exists.
OFF Alarm Power Interrupt is DFF. Output will be in the alarm condition on power-up regardless of condition of process.

52iH Set Point 2 Inhibit: Select On or OFF.
On Alarm Inhibit is On. Alarm action is suspended until the process value first enters a non-alarm condition.
DFF Alarm Inhibit is OFF.

S2LP Set Point 2 Lamp: Select Oon or DoFF.
Oon Lamp ON when Output is ON.
DoFF Lamp OFF when Output is ON.

ALARM TYPE AND ACTION (if alarm function is present)

Caution: In any critical application where failure could cause expensive product loss or endanger personal safety, a redundant limit controller is required.

When setting an alarm value for an absolute alarm ($\mathrm{Al}+=\mathrm{Ab} 5$), simply set the value at which the alarm is to occur.

When setting the alarm value for a deviation alarm ($\mathrm{Al}+=d E$), set the difference in value from the Set Point desired. For example if a low alarm is required to be 5 degrees below the Set Point, then set AlLo to -5. If a high alarm is required 20 degrees above the Set Point, then set $\mathrm{AlHi}_{\mathrm{H}}$ to +20 . If the Set Point is changed, the alarm will continue to hold the same relationship as originally set.

The diagram below shows the action and reset functions for both absolute and deviation alarms.

ABSOLUTE ALARMS

Note that when Alarm Power Interrupt, AlPi, is programmed On and Alarm Reset, AlrE , is programmed for Hold, the alarm will automatically reset upon a power failure and subsequent restoration if no alarm condition is present.

If Alarm Inhibit, AliH, is selected On_{n}, an alarm condition is suspended upon power up until the process value passes through the alarm set point once. Alarm inhibit can be restored as if a power up took place by pressing both the \square INDEX \& ENTER keys for 3 seconds.

> WARNING: IF INHIBIT IS ON AND A POWER FAILURE OCCURS DURING A HIGH ALARM, RESTORATION OF POWER WILL NOT CAUSE THE ALARM TO OCCUR IF THE PROCESS VALUE DOES NOT FIRST DROP BELOW THE HIGH ALARM SETTING. DO NOT USE THE ALARM INHIBIT FEATURE IF A HAZARD IS CREATED BY THIS ACTION. BE SURE TO TEST ALL COMBINATIONS OF HIGH AND LOW ALARM INHIBIT ACTIONS BEFORE PLACING CONTROL INTO OPERATION.

The following menu items apply only to the alarm.
RLI Alarm 1 function: Select OFF, Lo, Hi, HiLo, or EUnt.
DFF Alarm 1 is disabled. No Alarm 1 menu items appear in the Secondary or Secure menus.
Lo Low Alarm Only. AlLo appears in the Secondary Menu.
$\mathrm{Hi}_{\mathrm{i}} \quad$ High Alarm Only. AlHi appears in the Secondary Menu.
HiLo High and Low Alarms. Both RILo and RIHi appear in the Secondary Menu, and share the same Alarm 1 Relay output.
EUnt Alarm 1 is controlled by the Ramp/Soak program function. See pages 15-18 and 29 (\#Al) for further information.

If RLI is set to OFF goto RL? (next page).
If RLI is set to EUnt, go to RlSt below.
Alt Alarm 1 Type: Select RbS or dE
Rb5 Absolute Alarm that may be set anywhere within the values of 5[RL and 5CAH and is independent of 5P1.
dE Deviation Alarm that may be set as an offset from 5P1. As 5Pl is changed the Alarm Point will track with 5P1. A deviation alarm will also track any active ramp or soak set point.

Rlre Alarm 1 Reset: Select OnOF or Hold.
OnOF Automatic Reset.
Hold Manual Reset. Reset (acknowledge) by simultaneously pressing the $\square \square$ INDEX \& DOWN ARROW keys for 3 seconds.

RiPi Alarm 1 Power Interrupt: Select On or OFF.
On Alarm Power Interrupt is On.
DFF Alarm Power Interrupt is DFF.
BliH Alarm 1 Inhibit: Select On or OFF.
On Alarm Inhibit is On. Alarm action is suspended until the process value first enters a non-alarm condition.
OFF Alarm Inhibit is DFF.
Al5t Alarm 1 Output State: Select [LOS or OPEn.
[L05 Closes Contacts at Alarm Set Point.
OPEn Opens Contacts at Alarm Set Point.
AILP Alarm 1 Lamp: Select 0 on or OoFF.
Oon Alarm Lamp is ON when alarm contact is closed.
DoFF Alarm Lamp is OFF when alarm contact is closed.

AILb Alarm 1 Loop Break. Select On or OFF.
On Loop Break Condition will cause an Alarm Condition.
OFF Loop Break will not affect the Alarm Condition.
AL2 Alarm 2 function: Select OFF, Lo, Hi, HiLo, or EUnt.
OFF Alarm 2 is disabled. No Alarm 2 menu items appear in the Secondary or Secure menus.
Lo Low Alarm Only. A2Lo appears in the Secondary Menu.
$\mathrm{Hi} \quad$ High Alarm Only. A 2 Hi appears in the Secondary Menu.
HiLo High and Low Alarms. Both R2Lo and A2Hi appear in the Secondary Menu, and share the same Alarm Relay output.
EUnt Alarm 2 is controlled by the Ramp/Soak program function. See pages 15-18 and 29 (\#R2) for further information.

If RL2 is set to OFF and the control is not equipped with options, the Secure Menu ends here. If AL 2 is set to OFF and the control is equipped with options, proceed to 5P5A, Addr, or rSCL below.

If RL2 is set to EUnt, go to R2S + below.
R2 \dagger Alarm 2 Type: Select Ab 5 or $d E$
Ab5 Absolute Alarm that may be set anywhere within the values of 5[AL and 5CAH and is independent of 5P1.
dE Deviation Alarm that may be set as an offset from 5P1. As 5P1 is changed the Alarm Point will track with 5P1. A deviation alarm will also track any active ramp or soak set point.

A2re Alarm 2 Reset: Select OnOF or Hold.
OnDF Automatic Reset.
Hold Manual Reset. Reset (acknowledge) by simultaneously pressing the $\square \square$ INDEX \& DOWN ARROW keys for 3 seconds.

A2Pi Alarm 2 Power Interrupt: Select On or OFF.
On Alarm Power Interrupt is On.
DFF Alarm Power Interrupt is DFF.
A己iH Alarm 2 Inhibit: Select On or OFF.
On Alarm Inhibit is On. Alarm action is suspended until the process value first enters a non-alarm condition.
DFF Alarm Inhibit is OFF.

A2St Alarm 2 Output State: Select [LO5 or OPEn.
[L05 Closes Contacts at Alarm Set Point.
OPEn Opens Contacts at Alarm Set Point.
AᄅLP Alarm 2 Lamp: Select Don or DoFF.
Don Alarm Lamp is ON when alarm contact is closed.
DoFF Alarm Lamp is OFF when alarm contact is closed.
A2Lb Alarm 2 Loop Break. Select On or OFF.
On Loop Break Condition will cause an Alarm Condition.
DFF Loop Break will not affect the Alarm Condition.

5P5A
(Option 948, 4-Stage Set Point) Switch Action: Select rE orint. rE Set Point Stage selected by external contact closures.
int Set Point Stage selected by internal menu selection. See 5P menu item in Secondary Menu.

Fddr (Option 992, 993, 995, 996, Serial Communications) Control Address: Set from 1 to ЭFF for Options 992 and 993. Set from 1 to FF for Options 995 and 995. This number (hexadecimal, base 16) must match the address number used by the host computer. Power to instrument must be turned off and on before change takes effect (see Page 21).
bRUd (Option 992, 993, 995, 996, Serial Communications) Communication Baud Rate: Select 300 , 1200, 2400, 4800, 7600 (baud), 19.2, or 28.8 (kbaud) This number must match the baud rate used by the host computer. Power to instrument must be turned off and on before change takes effect (see Page 21).
nRt (Option 992, 993, 995, 996, Serial Communications) No Activity Timer: Select DFF or 1 to 99 minutes.
1-99 Maximum time between host computer accesses. If the timer counts to 0, CHE[LorE will be displayed.
OFF No Activity Timer function is disabled.
Stor (Option 992, 993, 995, 996, Serial Communications) Store to EEPROM: Select UES or no. (See additional information on pages 22-23).
UE5 Menu Item changes made through the Serial Communications are stored directly to the EEPROM.
no Menu Item changes made through the Serial Communications are stored in RAM.
(Option 924, 926, 928, Analog Remote Set Point) Remote Scale Low: Select 100 to 11998 counts below r5CH. The total span between r5CL and r5CH must be within 11998 counts. Maximum setting range is -1999 to +9999 counts.
(Option 924, 926, 928, Analog Remote Set Point) Remote Scale High: Select 100 to 11998 counts above r5CL. The total span between r5CL and r5CH must be within 11998 counts. Maximum setting range is -1999 to +9999 counts.

ERROR MESSAGES

Any error message may be cleared by using the 'Global Reset' by pressing and holding the

Display	Meaning	SP Outputs	Action Required
RrEA (Alternates with PV)	This message appears if the ambient temperature of the control approaches the ends of tolerance.	Set point outputs active Alarm active	Correct the ambient temperature conditions. Ventilate the area of the cabinet or check for clogged filters. If internal temperature sensor (RJC located in terminal 2) is broken, return to factory for service.
ArEA	This message appears if the ambient temperature of the control is out of range or RJC sensor is broken	Set point outputs active Alarms active	Correct the ambient temperature conditions. Ventilate the area of the cabinet or check for clogged filters. If internal temperature sensor is broken, return to factory for service.

ERROR MESSAGES

Any error message may be cleared by using the 'Global Reset' by pressing and holding the

Display	Meaning	SP Outputs	Action Required
UFL or OFL	Underflow or Overflow: Process value has exceeded input range ends.	Set point outputs active Alarm active	May be normal if Input signals go above or below range ends. If not the case, check sensor, input wiring and correct.
	UFL or OFL will sequence to display one of these messages if the inPt is set for a time value.	Set point outputs inactive Alarm active	When inPt (input fault timer) has been set for a time, the outputs will be turned off after the set time. Setting the time to OFF causes the outputs to remain active, however UFL or OFL will still be displayed.
bRd $\ln P$	For RTD inputs RTD is open or shorted.		Correct or replace sensor.
$\begin{aligned} & \text { OPEn } \\ & \text { inf } \end{aligned}$	For THERMOCOUPLE inputs thermocouple is open.		Correct or replace sensor. Clear with 'Global Reset'.
LOOP bRd	The sensor may be defective, heater fuse open, heater open, or the final power output device is bad.	Set point outputs inactive. Alarm active.	Correct or replace sensor, or any element in the control loop that may have failed. Correct the problem. Clear with 'Global Reset'
5EnC bRd	Sensor Rate of Change exceeded the programmed limits set for 5EnL.	Set point outputs inactive. Alarm active	Check for the cause of the error. The value setting may be too slow for the process, or the sensor is intermittent. Correct the problem. Clear with 'Global Reset'.
CHEC CAL	Check calibration appears as an alternating message if the instrument calibration nears tolerance edges. Check calibration appears as a flashing message if the instrument calibration exceeds specification.	Set point outputs active Alarm active Set point outputs inactive Alarm active	Remove the instrument for service and / or recalibration. Remove the instrument for service and / or recalibration.

ERROR MESSAGES

Any error message may be cleared by using the 'Global Reset' by pressing and holding the

Display	Meaning	SP Outputs	Action Required
No display lighted	Display is blank. Instrument is not getting power, or the supply voltage is too low.	Set point outputs inactive Alarm inactive	Check that the power supply is on, measure supply voltage, check that the external fuses are good.
$\begin{aligned} & \text { FRIL } \\ & +E S+ \end{aligned}$	Fail test appears upon power up if the internal diagnostics detect a failure. This message may occur during operation if a failure is detected. Displays flash. Fail test may also occur due to an EEPROM failure.	Set point outputs inactive Alarm inactive	The display alternates between FRIL $+E 5 \dagger$ and one of the following messages: $F A C+d F L+$: Memory may be corrupted. Press the DOWN ARROW \& ENTER keys to return control to the factory default settings. Recheck controller programming. rEt FAC + : Unrecoverable error, return to factory for service.
CHEC 5P1, CHEC 5P2, CHE[15P,..., CHE[165P,	This message will appear upon power up if $5 \mathrm{Pl}, 5 \mathrm{P}$, \# 5 Pl , or \#\#SP is set outside of the 5PL or 5PH values.	Set point outputs inactive Alarm active	Correct the 5Pl, etc. or adjust the SPL or SPH values by programming new values.
CHEC 5PL or CHEC SPH	This message appears at power up if 5PL or SPH values are programmed outside the input range ends.	Set point outputs inactive Alarm active	Correct the 5PL or 5PH values by programming new values.
$\begin{aligned} & \text { CHEC } \\ & \text { r5pt } \end{aligned}$	This message appears if the analog remote set point signal is out of range.	Set point outputs active Alarm active	The control will revert to 5P1. Correction of the analog signal or turning OFF the r5P+ clears the error message.
$\begin{aligned} & \text { CHEC } \\ & \text { LorE } \end{aligned}$	This message appears if the Serial Communications has timed out.	Set point outputs active Alarm active	Change the LorE to LOC. Restore the communications line and switch LorE back to re.

DO NOT ENTER THE CONFIGURATION MENU UNLESS YOU HAVE BEEN INSTRUCTED TO BY THESE INSTRUCTIONS. INCORRECT ENTRY OF DATA IN THE CONFIGURATION MENU MAY CAUSE IMPROPER OR UNPREDICTABLE OPERATION OF THE INSTRUMENT.

The Configuration Menu is used to quickly recover the instrument after certain Error Codes. The configuration for your particular model is shown on the Model / Serial label located on the left side (when viewed from the front) of the instrument housing. A label found inside on the right side of the chassis shows the same information.

If you do recover the instrument from a FAiL $+E 5 \dagger$ error, the memory configuration is restored to the factory settings. All hardware inputs and outputs are automatically recognized except for Options 924, 926, and 928.

If you have a instrument equipped with one of these options, Factory Default will not automatically restore these settings. They must be set by hand.

To re-configure:

1. At power up, simultaneously press and hold the INDEX \& ENTER keys while the lamp test or self test is displayed. Hold the keys down until the ROM ID code appears.
2. Press the INDEX key to advance to the next menu item, FRC $+d F L+$. This function restores the control to original factory settings. It will also remove all of the hardware, option, and software configuration values. After selecting FRC $\dagger d F L+$ you will need to restore the configuration values as shown above to allow the instrument to operate correctly.

To restore factory default values, press and hold the ENTER key. While holding the ENTER key also press the DOWN ARROW key. The display will blink momentarily and the instrument will reboot. The instrument will then display the ROM ID. Press INDEX to step through FAC $+d F L+$ and continue at step 3.
3. Press INDEX to $0 P+1$. If your instrument is equipped with Option 924, 926, or 928, press the UP ARROW or DOWN ARROW as necessary to display $r 5 \mathrm{P}+$. The display will be flashing. To select, press ENTER while $r 5 \mathrm{P} \dagger$ is displayed. When selected, the option number will stop flashing. HARDWARE TO SUPPORT IT. SELECTION OF AN UNSUPPORTED OPTION MAY CAUSE IMPROPER OR UNPREDICTABLE OPERATION OF THE INSTRUMENT.
4. Press INDEX to [nFl.
5. Press INDEX to RcPt. If you do not want to retain the re-confi guration, this is your last chance to return to the old confi guration. Press ENTER at AcPt no to exit and retain the old configuration. Otherwise, press UP ARROW and ENTER at RcP† UES to retain the new configuration.
6. The instrument will re-boot with factory settings.

SPECIFICATIONS

Selectable Inputs: Thermocouple, RTD, DC Voltage, or DC Current selectable. Input Impedance:

Thermocouple $=3$ megohms minimum. Current = 10 ohms.

RTD current $=200 \mu \mathrm{~A}$.
Voltage $=5000$ ohms.
Sensor Break Protection: De-energizes control output to protect system after customer set time. (See inPt in Secure Menu.)
Set Point Range: Selectable (See Input Ranges Page 49).
Display: Two 4 digit, 7 segment 0.56 " high LEDs.
Control Action: Reverse (usually heating), Direct (usually cooling) selectable.
Proportional Band: 1 to $9999^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}$, or counts.
Reset Time (Integral): Off or 0.1 to 99.9 minutes.
Rate Time (Derivative): Off or 0.01 to 99.99 minutes.
Cycle Rate: 1 to 80 seconds.
On - Off Differential: Adjustable $1^{\circ} \mathrm{F}, 1^{\circ} \mathrm{C}$, or 1 count to full scale in $1^{\circ} \mathrm{F}, 1^{\circ} \mathrm{C}$, or 1 count steps.
Alarm On - Off Differential: $1^{\circ} \mathrm{F}, 1^{\circ} \mathrm{C}$, or 1 count.
Fuzzy Percent: 0 to 100\%.
Fuzzy Rate: Off or 0.01 to 99.99 counts per second.
Fuzzy Band: Off or 1 to $4000^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}$, or counts.
Accuracy: $\pm 0.25 \%$ of span, ± 1 least signifi cant digit.
Resolution: 1 degree or 0.1 degree, selectable.
Line Voltage Stability: $\pm 0.05 \%$ over the supply voltage range.
Temperature Stability: $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical, $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum.
Common Mode Rejection: 140 db minimum at 60 Hz .
Normal Mode Rejection: 65 db typical, 60 db at 60 Hz .
Isolation:
Relay and SSR outputs: 1500 Vac to all other inputs and outputs;
SP1 and SP2 Current outputs: 500 Vac to all other inputs and outputs, but not isolated from each other;
SP1 and SP2 Switched Voltage outputs: 500 Vac to all other inputs and outputs, but not isolated from each other.
24 VDC Loop Power: 500VAC to all inputs and outputs.
Supply Voltage: 100 to 240 Vac, nominal, $+10-15 \%, 50$ to 400 Hz . single phase; 132 to 240 VDC, nominal, +10-20\%.
Loop Power Supply: 24 VDC @ 50 mA , regulated.
Power Consumption: 5VA maximum.
Operating Temperature: -10 to $+55^{\circ} \mathrm{C}\left(+14\right.$ to $\left.131^{\circ} \mathrm{F}\right)$.
Storage Temperature: -40 to $+80^{\circ} \mathrm{C}\left(-40\right.$ to $\left.176^{\circ} \mathrm{F}\right)$.
Humidity Conditions: 0 to 90% up to $40^{\circ} \mathrm{C}$ non-condensing, 10 to 50% at $55^{\circ} \mathrm{C}$ non-condensing.
Memory Backup: Nonvolatile memory. No batteries required.

Control Output Ratings:
SSR: 2.5 A @ 240 Vac at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$. Derates to $1.25 \mathrm{~A} @ 55^{\circ} \mathrm{C}\left(130^{\circ} \mathrm{F}\right)$;
Relay: SPDT, 10 A @ 240 VAC resistive; 1/2 hp @ 120 VACor 1/3 hp @ 240 VAC;
Alarm Relay: SPST, 3 A @ 240 VAC resistive; 1.5 A @ 240 VAC inductive. Pilot Duty
Rating: 240 VA, 2A @ 120 VAC or 1A @ 240 VAC.
Current (isolated): 0 to 20 mA across 600 ohms maximum.
Switched Voltage (isolated): 15 VDC @ 20 mA .
Panel Cutout: $92 \mathrm{~mm} \times 92 \mathrm{~mm}$ (3.625" x 3.625").
Depth Behind Mounting Surface: 103 mm (4.0") maximum.
Weight: 454 g (16 oz).
Agency Approvals: UL, C-UL E83725; CE.
Front Panel Rating: IP66, (UL Type 4X).

OPTIONS

-924 Analog Remote Set Point
Input: 0 to 10 VDC
Input Impedance: 1 Meg Ohms
Isolation: Shares common ground with PV input.
Scale: Programmable from 100 to 11998 counts, depending on PV range selected.
-926 Analog Remote Set Point
Input: 0 to 20 mADC.
Input Impedance: 10 Ohms
Isolation: Shares common ground with PV input.
Scale: Programmable from 100 to 11998 counts, depending on PV range selected.
-928 Analog Remote Set Point
Input: 0 to 10,000 ohms, two wire.
Search Current: $4 \mu \mathrm{~A}$.
Isolation: Shares common ground with PV input.
-934 Analog Retransmission of PV/SV (programmable)
Output: 0 to 20 mADC into 600 Ohms, maximum.
Isolation: 500 VAC
Scale: Programmable from 100 to 11998 counts, depending on PV range selected.
-936 Analog Retransmission of PV/SV (programmable)
Output: 0 to 10 VDC @ 20 mA maximum.
Isolation: 500 VAC
Scale: Programmable from 100 to 11998 counts, depending on PV range selected.
-948 Four Stage Set Point
Input: Dry contact or Transistor switch (NPN open collector type).
Current: 1 mADC.
Isolation: Shares common ground with PV input.

```
-992 RS-485 Series Communications
    Port Compliance: ElA-485
    Isolation: 500 VAC
    Protocol: Lovelink }\mp@subsup{}{}{\mathrm{ TM II}
    Address Range: 001H to 3FFH
    Baud Rates: 300, 1200, 2400, 4800, 9600, 19.2k, 28.8k.
    Mode: Half duplex
    Character: }8\mathrm{ bits, }1\mathrm{ start, }1\mathrm{ stop, no parity.
    Number of units on line/port': }32
    Cable Length}\mp@subsup{}{}{1}: 6,000 ft (1,828 m).
    Termination: }120\mathrm{ Ohms, balanced.
-993 RS-232 Serial Communications
    Port Compliance: RS-232C
    Isolation: 500 VAC
    Protocol: Lovelink }\mp@subsup{}{}{\mathrm{ TM II}
    Address Range: 001H to 3FFH
    Baud Rates: 300, 1200, 2400, 4800, 9600, 19.2k, 28.8k.
    Mode: Half duplex
    Character: }8\mathrm{ bits, }1\mathrm{ start, 1 stop, no parity.
    Number of units on line/port1: 1.
    Cable Length: }25\textrm{ft (7.6 m).
-995 RS-232 Serial Communications
    Port Compliance: RS-232C
    Isolation: 500 VAC
    Protocol: MODBUS® RTU
    Address Range: 001H to 0FFH
    Baud Rates: 300, 1200, 2400, 4800, 9600, 19.2k, 28.8k.
    Mode: Half duplex
    Character: }8\mathrm{ bits, }1\mathrm{ start, }1\mathrm{ stop, no parity.
    Number of units on line: 1.
    Cable Length: }25\textrm{ft (7.6 m).
-996 RS-485 Serial Communications
    Port Compliance: EIA-485
    Isolation: 500 VAC
    Protocol: MODBUS® RTU
    Address Range: 001H to 0FFH
    Baud Rates: 300, 1200, 2400, 4800, 9600, 19.2k, 28.8k.
    Mode: Half duplex
    Character: }8\mathrm{ bits, }1\mathrm{ start, 1 stop, no parity.
    Number of units on line }\mp@subsup{}{}{1}:3
    Cable Length}\mp@subsup{}{}{1}:6,000 ft (1,828 m).
    Termination: }120\mathrm{ Ohms, balanced.
```

${ }^{1}$ Number can be increased through use of a repeater such as the Mother Node ${ }^{\mathrm{TM}}$.
Consult factory for details.
Lovelink ${ }^{\text {TM }}$, Lovelink ${ }^{\text {TM }} \mathrm{II}$, and Mother Node ${ }^{\text {TM }}$ are Trademarks of Love Controls. MODBUS ${ }^{\circledR}$
is a trademark of Schneider Automation.

INPUT RANGES

INPUT TYPE	RANGE ${ }^{\circ} \mathrm{F}$	RANGE ${ }^{\circ} \mathrm{C}$
Type J or L^{1} Thermocouple	-100 to +1607	-73 to +871
Type K^{1} Thermocouple	-200 to +2500	-129 to +1371
Type ${ }^{1}$ Thermocouple	-350 to +750	-212 to +398
Type E^{1} Thermocouple	-100 to +1800	-73 to +982
Type R Thermocouple	0 to 3200	-17 to +1760
Type S Thermocouple	0 to 3200	-17 to +1760
Type B Thermocouple	+75 to +3308	+24 to +1820
Type C Thermocouple	0 to 4208	-17 to +2320
Type N ${ }^{1}$ Thermocouple	-100 to +2372	-73 to +1300
100Ω Plt. 0.00385 DIN ${ }^{1}$ RTD	-328 to 1607	-200 to +875
100Ω Plt. 0.00392 NIST 1 RTD	-328 to 1607	-200 to +875
120Ω Nickel 0.00628 US 1 RTD	-112 to +608	-80 to +320
1000Ω Plt. 0.00385 DIN 1 RTD	-328 to +1607	-200 to +875
Current/Voltage/ Δ Voltage 2	Scalable Units from -1999 to +9999	

[^1]${ }^{2}$ The 0 to $20 \mathrm{mADC}, 4$ to $20 \mathrm{mADC}, 0$ to $10 \mathrm{VDC}, 2$ to 10 VDC , and -10 to +10 mVDC inputs are fully scalable from a minimum of 100 counts span placed anywhere within the within the range of -1999 to +9999 . Decimal point position is adjustable from the zero place (9999), tenths (999.9), hundredths (99.99), thousandths (9.999), or ten thousandths (.9999).

Meets IP66 (UL Type 4X)

All dimensions are in millimeters with inches in parenthesis.
Panel cutput for all models is $92 \mathrm{~mm} \times 92 \mathrm{~mm}$ ($3.625 \mathrm{in} \times 3.625 \mathrm{in}$). Allow for $13 \mathrm{~mm}(0.5 \mathrm{in})$ clearance at the rear of the instrument.

MOD-TRONIC

www.mod-tronic.com | sales@mod-tronic.com | 1-800-794-5883

[^0]: © 2001, Love Controls. All rights reserved. No portion may be copied without the express written consent of Love Controls.

[^1]: ${ }^{1}$ These Input Types can be set for 0.1° display. If temperature goes above 999.9° or less than -199.9° the display will return to whole degree resolution.

