Removable Plugs

See Wiring

Diagrams on

Next Page

Quick Link: api-usa.com/4393

6

15

0-10 mV to 0-100 V, ±50 mV to ±10 V, 0-1 mA to 0-50 mA, 4-20 mA

2 Outputs: 0-1 V to 0-10 V, ±1 V to ±10 V, 0-1 mA to 20 mA, 4-20 mA

- One Input to Two Outputs with Full Isolation
- Zero and Span for Each Output
- Full 1200 V Input/Output /Power Isolation
- Input and Output LoopTracker® LEDs
- Output Test Button for Each Channel
- Built-In Loop Power Supplies for Sink/Source I/O

- Split, Convert, Boost, and Rescale Process Signals
- Split Process Signals for Control and Validation
- Interface a Process Signal with Multiple Panel Meters, PLCs, Recorders, Data Acq., DCS, & SCADA Systems

DC Input Range

Factory ranged, please specify

Voltage: 0-10 mVDC to 0-100 VDC Bipolar voltage: ±50 mVDC to ±10 VDC

0-1 mADC to 0-50 mADC, 4-20 mADC Current:

Input Impedance and Burden 200 k Ω minimum Voltage: Current: 50 O typical

Voltage burden: 1.25 VDC max. at 20 mA current input

Input Loop Power Supply

15 VDC ±10%, regulated, 25 mADC

May be selectively wired for sinking or sourcing mA input

Variable brightness LEDs indicate I/O loop level and status One for input, one for each output

Channel 1 and Channel 2 DC Output Ranges

Factory configured, please specify for each output channel

Voltage: 0-1 VDC to 0-10 VDC, 10 mA max up to 20 VDC with M19, M29, M39

Bipolar voltage: ±1 VDC to ±10 VDC

Current: 0-1 mADC to 0-20 mADC, 4-20 mADC

20 V compliance, 1000 Ω at 20 mA

Output Calibration

Multi-turn zero and span potentiometers for each output channel ±15% of span adjustment range typical

Output Loop Power Supplies

20 VDC nominal, regulated, 25 mADC for each output channel May be selectively wired for sinking or sourcing mA output

Output Test/Override

Front momentary buttons or external contact closures for each channel to set output test levels.

Each output test level potentiometer adjustable 0-100% of span

Output Ripple and Noise

Less than 10 mVRMS

Linearity

Better than ±0.1% of span

Ambient Temperature Range and Stability

-10°C to +60°C operating ambient

Better than ±0.04% of span per °C stability

Response Time

70 milliseconds typical

Fast response time option DF, 10 milliseconds typical

Isolation

Full 4-way, 1200 VRMs minimum

Installation Environment

IP 40, requires installation in panel or enclosure with adequate ventilation

For use in Pollution Degree 2 Environment

Mount vertically (as shown in picture) to a 35 mm DIN rail allowing minimum 1" (25 mm) above and below housing vents for air circulation.

Power

85-265 VAC, 50/60 Hz or 60-300 VDC, 6 W maximum D versions: 9-30 VDC or 10-32 VAC 50/60 Hz, 6 W maximum

Dimensions and Connectors

1.78" W x 4.62" H x 4.81" D

45 mm W x 117 mm H x 122 mm D

Eight 4-terminal removable connectors, 14 AWG max wire size

Sink or Source mA Output for **Each Channel**

Output LoopTracker LED for Each Channel

Applications Link

api-usa.com/apps

ree Factory

I/O Setup!

Description

IFÉTIME

ARRANT

Zero and Span for Each Channel

Input LoopTracker LED

Custom I/O Ranges

The APD 4393 IsoSplitter accepts a DC voltage or current

input and provides two optically isolated DC voltage or current

outputs that are linearly related to the input. The input range

and each output range are independent and can be specified as

required. This provides an economical solution when one signal

Typical applications include isolation, output splitting, output

device separation and redundancy (i.e. to prevent failure of

The input signal is filtered, amplified, split, and then passed

through an opto-coupler to the output stages. Full 4-way isola-

tion (input, output 1, output 2, power) make this module useful

for ground loop elimination, common mode signal rejection,

the entire loop if one device fails), or a combination of these.

must be sent to two different devices.

Connect Sink or Source mA Input 19 **Universal Power**

25 26 27

10 11 12

LoopTracker

APD 4393

21 22

API exclusive features include three LoopTracker LEDs (green for input, red for each output) that vary in intensity with changes in the process input and output signals.

29 30 31

These provide a guick visual picture of your process loop at all times and can greatly aid in saving time during initial startup and troubleshooting.

Output Test

An API exclusive feature includes output test buttons for each channel to provide a fixed output (independent of the input) when held depressed. A test button is provide for each output channel. The output test greatly aids in saving time during initial startup and/or troubleshooting.

The test output level for each channel is potentiometer adjustable from 0 to 100% of the output span.

Terminals are provided to operate the test functions remotely for each channel. This also allows use as a remote manual override to provide a temporary fixed output if desired.

Standard on the APD 4393 is a 15 VDC loop excitation supply for the input channel and 20 VDC loop excitation supplies for each output channel. These power supplies can be selectively wired for sinking or sourcing allowing use with any combination of powered or unpowered milliamp I/O devices.

Models are factory ranged. See I/O ranges above left. Please specify ranges and options on order

Input range

Channel 1 output range Channel 2 output range

and noise pickup reduction.

I/O Sink/Source Versatility

See options at right

Model	Description	Power
APD 4393	IsoSplitter 1 input to 2 outputs	85-265 VAC, 50/60 Hz or 60-300 VDC
APD 4393 D		9-30 VDC or 10-32 VAC

Options and Accessories

Options—add to end of model number

Channel 1 I/O reversal (ie. 4-20 mA in to 20-4 mA out)

Channel 2 I/O reversal (ie. 4-20 mA in to 20-4 mA out)

Channel 1 and channel 2 I/O reversal **R3**

Channel 1 high voltage output >10 V up to 20 V

Channel 2 high voltage output >10 V up to 20 V

M39 Channel 1 and channel 2 high voltage output

Fast response time, 10 milliseconds typical DF option will cause output noise levels to be greater than

Conformal coating for moisture resistance

Accessory—order as separate line item

standard specifications.

API BP4 Spare removable 4 terminal plug, black

Precautions

WARNING! All wiring must be performed by a qualified electrician or instrumentation engineer. See diagram for terminal designations and wiring examples. Consult factory for assistance.

WARNING! Avoid shock hazards! Turn signal input, output, and power off before connecting or disconnecting wiring, or removing or installing module.

Précautions

ATTENTION! Tout le câblage doit être effectué par un électricien ou ingénieur en instrumentation qualifié. Voir le diagramme pour désignations des bornes et des exemples de câblage. Consulter l'usine pour assistance.

ATTENTION! Éviter les risques de choc! Fermez le signal d'entrée, le signal de sortie et l'alimentation électrique avant de connecter ou de déconnecter le câblage, ou de retirer ou d'installer le module.

API maintains a constant effort to upgrade and improve its products. Specifications are subject to change without notice. See api-usa.com for latest product information. Consult factory for your specific requirements.

WARNING: This product can expose you to chemicals including nickel, which are known to the State of California to cause cancer or birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov

I/O Connections

Each product is factory configured to your exact input and output ranges as indicated on the serial number label.

Polarity must be observed for signal wiring connections. If the input and/or output do not function, check wiring and polarity.

For milliamp output ranges determine if your devices provide power to the current loop or if the loop must be powered by the APD module. Typical voltage may be 9-24 VDC at your device's terminals if it provides power to the loop.

Outputs

Type of Device for Output Channel 1	– Terminal	+ Terminal
Measuring or recording device accepts a voltage input.	3 (–)	4 (+)
Measuring/recording device accepts a mA (current) input and the input is unpowered or passive. APD module provides the loop power.		4 (+20 V)
Measuring or recording device accepts a mA (current) input and provides power to the current loop.	2 (–)	3 (+)
Type of Device for Output Channel 2	– Terminal	+ Terminal
	- Terminal 7 (-)	+ Terminal 8 (+)
Channel 2 Measuring or recording device	7 (–)	

Input

Type of Input Device	- Terminal	+ Terminal
Sensor or transmitter with a voltage output.	17 (–)	19 (+)
Transmitter with a mA (current) output that provides power to the current loop. Typically a 3 or 4-wire device.	17 (–)	19 (+)
Transmitter with mA (current) output that is unpowered. Typically a 2-wire device. APD module provides loop power.	19 (–)	18 (+15 V)

Module Power Terminals

Check model/serial number label for module operating voltage to make sure it matches available power.

When using DC power, either polarity is acceptable, but for consistency, wire positive (+) to terminal 25 and negative (-) to terminal 28.

The power supplies are fuse protected and the unit may be returned to API for fuse replacement.

Mounting to a DIN Rail

Install module vertically on a 35 mm DIN rail in a protective enclosure away from heat sources. Do not block air flow. Allow 1" (25 mm) above and below housing vents for air circulation.

- 1. Tilt front of module down and position the lower spring clips against the bottom edge of DIN rail.
- 2. Push front of module upward until upper mount snaps into place.

Avoid shock hazards! Turn signal input, output, and power off.

- 1. Push up on bottom back of module.
- 2. Tilt front of module downward to release upper mount from top edge of DIN rail.
- 3. The module can now be removed from the DIN rail.

Upper Mount

Calibration

Front-mounted Zero and Span potentiometers for each channel can be used to compensate for load and lead variations.

- 1. Apply power to the module and allow a minimum 30 minute warm up time.
- 2. Using an accurate calibration source, provide an input to the module equal to the minimum input required for the application.
- 3. Using an accurate measurement device for the output, adjust the Zero potentiometer for the exact minimum output desired. The Zero control should only be adjusted when the input signal is at its minimum. This will produce the corresponding minimum output signal. For example: 4 mA for a 4-20 mA output or -10 V for a ± 10 V output.
- 4. Set the input at maximum, and then adjust the Span pot for the exact maximum output desired. The Span control should only be adjusted when the input signal is at its maximum. This will produce the corresponding maximum output signal. Example: for 4-20 mA output, the Span control will provide adjustment for the 20 mA or high end of the signal.
- 5. Repeat adjustments for both output channels for maximum accuracy.

Output Test Function

When the Test button is depressed it will drive the output with a known good signal that can be used as a diagnostic aid during initial start-up or troubleshooting. When released, the output will return to normal.

Each Test Cal. potentiometer is factory set to approximately 50% output. It can be adjusted to set the test output from 0 to 100% of the output span. Press and hold the Test button and adjust the Test Cal. potentiometer for the desired output level.

They may optionally be externally wired for remote test operation or a manual override. See wiring diagram at right.

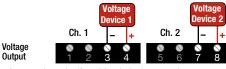
Operation

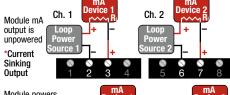
The APD 4393 IsoSplitter® accepts a DC voltage or current input and provides two optically isolated DC voltage or current outputs that are linearly related to the input.

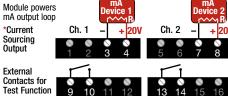
The green LoopTracker® input LED provides a visual indication that a signal is being sensed by the input circuitry of the module. It also indicates the input signal strength by changing in intensity as the process changes from minimum to maximum. If the LED fails to illuminate, or fails to change in intensity as

the process changes, check the module power or signal input wiring.

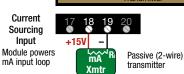
The two red LoopTracker output LEDs provide a visual indication that the output signals are functioning. They become brighter as the input and each corresponding output change from minimum to maximum.


For a current output the red LED will only light if the output loop current path is complete. For either current or voltage outputs, failure to illuminate or a failure to change in intensity as the process changes may indicate a problem with the module power or signal output wiring. Note that it may be difficult to see the LEDs under bright lighting conditions.

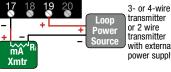

To avoid damage to the module, do not leave any unused mA outputs disconnected. Use a 1000 0hm 1/2 Watt resistor across unused mA terminals.

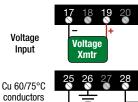


Output 1 Output 2


mA output: determine if receiving device has a passive or powered input. The module can be wired for a sinking or sourcing mA output.

To avoid damage to the module. do not make any connections to unused terminals





14 AWG

max.

transmitter or 2 wire transmitter with external power supply

To maintain full isolation avoid combining power supplies in common with inputs, outputs, or unit power

28 Power AC or DC -26 Earth Ground 25 Power AC or DC +